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INTRODUCTION

In research it frequently happens that K populations (K >2) are to be

tested for homogeneity of variance. Tests of homogeneity of variance are

appropriate in two general situations. First, these tests are used when the

experimenter has an a priori interest in testing the equality of variances

for K independent groups. Second, they are used in testing the assumption

of homogeneity of variance needed to guarantee the accuracy of certain tests

on means.

Various theories in education and psychology have generated a priori

hypotheses about equality of variances. For example, if high level skills

build upon lower level skills as in. Gagne's (1965) hierarchically arranged

behaviors, small variance in the low level skills would facilitate teaching

of higher skills. One of the major pieces of evidence for Cattell's two

factor theory of general intelligence is the difference in test score

variance between tests of fluid and tests of crystallized abilities

(Cattell, 1971). In classical mental test theory (Lord and Novick, 1968)

parallel forms of tests are required to have equal variances.

The use of tests of homogeneity of variance to guarantee the accuracy of

tests on means is considered by many to be unnecessary because the analysis

of variance is generally robust to violations of this assumption. Box (1954)

and Norton (Lindquist, 1953, p. 78) have shown that this assumption is

critical to the analysis of variance when n's are small or unequal. That

heterogeneous variances are not important when n's are equal seems to have

boundary conditions which may not have been sufficiently probed (Glass,
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Peckham and Sanders, 1972). Investigations of the t statistic with unequal

n's by Kohr (1970) and of three multiple comparison procedures, Multiple t

test (Fisher, 1935), the Tukey Wholly Significant Difference (Tukey, 1953;

Miller, 1966) and the Scheffg (Scheffg, 1953), by Howell (1971) indicate

that the assumption of homogeneity of variance is critical to these pro-

cedures also.

Typically, independent random samples are compared via some function of

the sample variances with a known sampling distribution when assumptions are

met. Bartlett and Kendall (1946) suggested randomly dividing each of the K

samples into subsamples and computing a variance estimate on each subsample.

An analysis of variance (AOV) is then conducted on the variable ln s2 to

test the equality of the K variances. The additive model of the AOV is met

by using ln s2 as the dependent variable but not by using simply s2. This

test is described in Scheffe (1959, p. 83), Odeh and Olds (1959) and Winer

(1971, p. 219). Games, Winkler and Probert (1972, p. 904) provided a des-

cription and an example including follow-up comparisons. In the present study

stability of Type I error rates, power and a procedure for estimating power

were investigated for the Bartlett and Kendall test with various subsample

sizes when the assumption of normality was met or was violated.

TESTING EQUALITY OF VARIANCES

In addition to the Bartlett and Kendall test a wide selection of tests

of homogeneity of variance is available in the statistical literature. The

first approach to the variance testing problem was made by Neyman and

Pearson (1931) using a likelihood-ratio statistic, approximately distributed

as chi-square (K - 1 degrees of freedom). The familiar Bartlett M test is
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a modification of this statistic improving the approximation to chi-square

(Bartlett, 1937). A modification of the Bartlett test which adjusts M to

compensate for the population kurtosis was proposed by Box and Andersen (1955).

A statistic designed for the situation where just one of several populations

is suspected of having a larger variance was introduced by Cochran (1941,

1951). The statistic is based on the ratio of the largest sample variance

to the sum of the sample variances: C = smax /Esi (Myers, 1966, p.73; Winer,

1971, p. 208). Hartley (1950) derived a statistic, F max, comparing the

largest and smallest of the sample variances to reduce the computational

effort typical of tests on variances (Myers, 1966, p. 73; Winer, 1971, p. 206).

Cadwell (1952) suggested an extension of the Hartley technique in which

variance estimates based on sums of squares are replaced by estimates based

on ranges. Another test based on the analysis of variance of transformed

observat!ons was suggested by Levene (1960). Levene proposed two transfor-

mations:

(1) zij = lxij -

(2) Sij = Zij = (IXii -

Miller (1968) proposed doing an AOV on Zi = IX. - m.I where is the
j

m
ij

th.
median of the 3 sample. The Foster and Burr Q test (Foster, 1964) is

based on a monotone function of the coefficient of variation of the sample

4 2
variances. For equal n, Q = Esk/(Esk)

2
. Miller (1968) applied the Tukey

jackknife technique (Mosteller and Tukey, 1968) to the variance testing

problem. Layard (1973) suggested a x
2 statistic useful with large samples.

Various nonparanetric tests have been developed and are discussed in Klotz

(1962). Only one, the Moses test (Moses, 1963) has been used in recent

comparisons with parametric tests.
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An imposing problem with tests of homogeneity of variance and one of

the main reasons for the proliferation of tests in this area is the general

sensitivity (nonrobustness) of these statistics to violations of the

normality assumption. Although the assumption is trivial to many tests on

means it is crucial to tests on variances. The difference lies in the

standard errors of the two statistics used when inferences are being made.

For tests on means the standard error of X = ct- = a
X
/A regardless of the

X

population form but with variances the standard error of s 2
= c!

s
2 =

+ where y
2
is the index of kurtosis for the population (Johnson

Y2
a
2 j21
n-n

and Jackson, 1959). Normal distributions have a y
2

value of 0.0. In

making inferences about s2 the assumption of normality is necessary not

only to show that the sampling distribution has a chi-square form but also to

fix the magnitude of the sampling fluctuation. If the population is platy-

kurtic (-2 < y2< 0.0) the value of y2 used in the theoretical derivation

will be larger than the true value and a conservative test will result.

Conversely, with a leptokurtic population (0.0 < y2 < -Fm) the true value

will be larger than the theoretical value, raising the probability of a

Type I error, P(EI) above alpha.

Scheffg (1959, p. 337) concluded that violations of the normality

assumption produce dangerous effects on inferences about variances because

although the theoretical distribution may have the correct location and

shape, at least for large n, it may have the wrong spread if the true y2

differs from zero. Box (1953) suggested that robustness is the most

important characteristic of a statistic even to the extent of sacrificing

power to ensure control of Type I error.
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The sensitivity to nonnormality of the F test of two independent

sample variances was pointed out by Pearson (1931), Geary (1947) and Gayen

(1950). Box (1953) showed that this sensitivity is even greater when the

number of variances exceeds two. Box showed that Bartlett's M is asymptotic-

ally distributed as (1 + .5y
2
) x

2

K-1
. Both the F max and the Cochran tests

were shown to be affected by kurtosis in much the same manner as the Bartlett

test. Box carried out a small sampling study comparing the Bartlett test

with the Bartlett and Kendall test for the case where the assumption of

normality was violated. The results for the Bartlett test showed extremely

large departures from the values expected from normal theory. In contrast,

the results for the Bartlett and Kendall test gave values agreeing with what

would be expected assuming that the logarithms of the variances were drawn

from a normal distribution.

Levene (1960) compared the empirical sampling distributions of F ratios

calculated on the Z..'s with the F distribution. Empirical probabilities

weze significantly different from the nominal alpha when sampling was from

a double exponential distribution. Miller (1968) suggested that this

condition will not necessarily improve as n increases since Z is not

asymptotically distribution free. Brown and Forsythe (1974) found better

agreement with the nominal alpha when deviations were taken from the median

rather than the mean.

Using a monte carlo design, Miller (1968) examined the robustness of the

F, Box-Andersen M', Levene S, Bartlett and Kendall (referred to as the Box

test), Moses and the Tukey jackknife test for the two group case with small

samples. Five distributions were used: (1) uniform, (2) normal, (3)

double exponential, (4) skew double exponential, and (5) sixth power.

The F test was found to be extremely nonrobust. Somewhat less sensitive

8



6

but still of questionable robustness were the Box-Andersen and jackknife

tests. The Levene S, Bartlett and Kendall, and Moses tests were generally

robust with empirical significance levels close to the nominally indicated

levels. In terms of robustness the F, Box-Andersen and jackknife tests

do not appear to be acceptable as tests of homogeneity of variance.

In a monte carlo study specifically designed to examine the robustness

of tests on variances, Fellers (1972) compared the Hartley approximation to

the Bartlett test (Hartley, 1940), the Cochran test, the F max test, the

Bartlett and Kenda 1 test (referred to as the Scheffg test), and three forms

of the Levene test. Populations considered were normal, leptokurtic-

symmetric, platykurtic-symmetric, leptokurtic-skewed and platykurtic-

skewed. Equal and unequal n cases were considered for three treatment groups

with total N set at 15. Fellers data showed the Bartlett test to be

conservative for the platykurtic populations and extremely permissive for

the leptokurtic populations. The Cochran and F max test were nonrobust for

all but the near normal populations with the leptokurtic populations

producing the most extreme effects. Of the three Levene tests, the S and Z

lacked sufficient robustness to be considered as acceptable tests of homogene-

ity of variance. The third, Z', based on the absolute deviations from the

median produced results so extreme as to render them uninterpretable.

Only the Bartlett and Kendall test proved to be generally robust for all

combinations of nonnormality and sample size.

Gartside (1972) investigated the stability of error rates when populations

had normal or Weibull (leptokurtic) distributions. In addition to the

Bartlett, Cochran, F max, and Bartlett and Kendall tests Gartside included

modifications of the Bartlett and Bartlett and Kendall tests and added the

Cadwell test. Only the Bartlett and Kendall test maintained stable error

9
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rates for the leptokurtic population. As the number of populations being

compared was increased the deviations from the nominal alpha also increased.

The latter supports Box (1953) who derived this conclusion mathematically.

The question of robustness was considered in two monte carlo studies

reported by Games, Winkler and Probert (1972). The first study compared

the F max, Cochran, two Levene (Z and S), and the Bartlett tests. In the

second study the Bartlett, Box-Andersen, Bartlett and Kendall, and Foster

and Burr Q tests were compared. Samples were drawn from six populations:

(1) normal, (2) slight skew, (3) moderate skew, (4) extreme skew, (5)

symmetric leptokurtic and (6) rectangular. Tests were conducted on three

samples of size 6 in the first study and of size 18 in the second. With

n=18 two forms of the Bartlett and Kendall test were used. The first used

nine subsamples of two cases each (LEV 2). The second used six subsamples

of size three (LEV 3). The results indicate that the Bartlett, F max,

Cochran, Levene Z and S, Foster-Burr, and Box-Andersen tests are extremely

sensitive to the shape of the underlying distribution. LEV 2 was conservative

for most distributions and not really sensitive to distribution form.

Although LEV 3 was slightly conservative it was most robust. Games et al.

concluded that on the basis of control of Type I error alone the Bartlett

and Kendall test is recommended for all situations.

Only the Moses test and the Bartlett and Kendall test have been shown

to be robust with respect to control of Type I error under the various

conditions of nonnormality which have been investigated. These would be the

recommended tests when there is suspected nonnormality in the data.

Unfortunately power considerations will lead to a different recommendation.

Pearson (1966) employed a monte carlo design to compare the power of

the Bartlett, F max, and CRdwell tests for five groups of five observations

10
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each. For all situations the Bartlett test exhibited the greatest power.

Pearson recommended the Bartlett test but noted that none of the tests were

robust to viclations Of the assumption of normality.

In a monte carlo study of the two group case by Miller (1968) power

for the F, Box-Andersen, Bartlett and Kendall, jackknife, Levene S and

Moses tests was investigated. The most powerful test examined, the F test,

was dismissed by Miller because of sensitivity to nonnormality. The Box-

Andersen and the jackknife had approximately the same power and were the most

powerful of the other tests. Slightly less powerful were the Bartlett and

Kendall test and a form of the jackknife test. The Levene Z was not as

powerful as those above. Least powerful of all the tests was the Moses test.

Miller suggested using the jackknife of the Box-Andersen as a general

technique for testing variances. If there is possible leptokurtosis in

the population an experimenter would be sacrificing control of Type I error

for power by following this suggestion.

Gartside (1972) investigated power for the Bartl F max, Cochran,

Cadwell and Bartlett and Kendall tests for the case where the assumption

of normality was met. The results showed the Bartlett test to be generally

most powerful. The Cochran test was most powerful when only one of a set

of variances was different. The F max and Cadwell tests showed fairly good

power in all cases as did a modification of the Bartlett test. The

Bartlett and Kendall test showed lower power. Gartside noted that the

success of the Bartlett test must be tempered by its unstable error

rates. He concluded that the more conservative Bartlett and Kendall test

is preferred if there is reason to believe that the data are nonnormal.

In the two sampling studies conducted by Games, Winkler and Probert

(1972) power of the selected tests on variances was investigated. Results

11
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for the normal and extreme skew populations were similar with the Bartlett

and F max tests showing nearly idencical power. The Cochran and both Levene

tests exhibited much lower power with the Levene S being the lowest of all.

In the second study the Bartlett and Foster-Burr Q tests consistently

showed the greatest power. The Bartlett and Kendall tests showed lower

power for all populations with LEV 3 considerably more powerful than LE'! 2.

With the normal population the Box - Andersen test exhibited power near the

Bartlett test but with the extreme skew population its power decreased

to the level of LEV 3. Games et al. concluded that the Bartlett, Foster-

Burr and F max tests are most powerful but are relatively useless for

leptokurtic populations because of inflated P(EI)'s. The LEV 3 had power

superior to the Box-Andersen test on the highly leptokurtic populations

and stands as the best statistic for this population condition.

Games at al. (1972) noted that the biggest question in the application

of the Bartlett and Kendall test is: given the number of treatments, K,

and samples of n observations each, how many subsamples, m, should be

used? If fewer subsamples are used the variance estimates become more

stable producing a smaller mean square error for the AOV which increases

power. But the degrees of freedom for the error term is also decreased when

m is lowered which reduces power. There should be an optimal value for m

which balances these two determinants of power.

Box (1953) first suggested an investigation to determine this optimal

value of m. Miller (1968) ignoreithe question, claiming that the choice of

subsample size rests on the shoulders of the statistician. A similar point

of view was taken by Winer (1971) who stated that the number of subsamples is

arbitrary. He did suggest using subsamples of approximately equal size,

preferably of size larger than three. To assure reasonable power Winer

12
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recommended having the total number of subsamples minus the number of

treatment groups, i.e., the degrees of freedom of the AOV error term,

at least equal to ten.

Three subsample sizes were compared for power by Gartside (1972).

With subsamples of size two, four and eight were used under several

conditions of variance heterogeneity with samples drawn from a normal

population. Using the intermediate arrangement, i.e., four samples of

size four produced the maximum power.

With n=18, Games et al. compared sampling arrangements of six sub-

samples of size three with nine subsamples of size two. Both arrangements

provided acceptable control of Type I error although the latter was

consistently conservative. Subsamples of size three produced higher power

than subsamples of size two for all populations at all points where the

null hypothesis was false.

Games et al. suggested using the power functions of the analysis of

variance to select sample and subsample sizes for the Bartlett and Kendall

test. By setting K, n and the degree of falsity of the null hypothesis

approximate power could be found for different subsample sizes. Tables

of the power functions of the analysis of variance are readily available

(Myers, 1966; Winer, 1971). Setting K = 3 and K = 5, all n's from 12 to

36 that had any two of the numbers 3, 4, 5 and 6 as factors were explored.

The noncentraliLy parameter of these tables, 4), (Myers, 1966, p. 77) is

discussed later in this paper. For a highly leptokurtic population,

y
2
= 6.0, the results suggested subsamples of size three would result in

maximum power up to n = 18 with little loss in power up to n = 36.

Setting y2 = 0.0, a normal population, suggested subsamples of size three

up to n = 13 but of size four from n = 18 to n = 36. Asymptotic power

13
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theory (Miller, 1968) suggests increasing subsample size for very large n.

No empirical test has been made of this method for selecting subsample size.

THE BARTLETT AND KENDALL STATISTIC

In investigations of variance heterogeneity the Bartlett and Kendall

test is appropriate for a one-way or higher analysis of variance layout.

For simplicity of presentation only the test for a single factor, indepen-

dent groups design is discussed.

The Bartlett and Kendall test under assumptions appropriate to the

analysis of variance, compares K samples of n. (i = 1, 2, ..., K) observa-

tions each. Observations are randomized within treatment groups and divided

into mi subsamples of vij = 1, 2, ..., mi) observations. On each subsam-

ple an estimate of the treatment variance, s.2 ., is computed. An AOV is

2then conducted using Yij = In as observations. If all are equalsij vij

the test statistic is:

where

[E
i
mi(Yi. - Y )2] E.

3.

(m.
3.

- 1)

[E
i
E. (Y

ij
- Y )2] (R - 1)

j

Y = E
j

/mi

Y = Ei miY /E
i
m
i

A weighted least squares solution was provided for the situation where

subsample sizes (vij) are not all equal by Scheffe (1959, p. 85). The test

statistic for unequal vij is:

14
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[E. 71i. 7(X. - X
..
)2] Ei (mi - 1)

3.
[E.3. E. u.

j
(Y. - (K 1)

where

= Vij - 1

ui. = Ej uij

u = E
i
u = EiEj u

ij

Xi. = Ej uijYij/ui.

X EiEj uijYij f

These two statistics can be compared to the F distribution with K - 1

and Ei (mi - 1) degrees of freedom.

The power functions of the analysis of variance appear apropriate for

estimating power and for selecting n and v (all vij equal) for a given

power for the Bartlett and Kendall test. A priori estimates of power can

be made using the Pearson and Hartley (1951, p. 112) charts of the power

functions for the analysis of variance. Scheffe (1959, p. 85) showed that

2 Y2 2

cr

2
ln s2 v - 1 +

which is the E(MSW) in an AOV on In s . Let 4) be

the noncentrality parameter of these charts (Myers, 1966, p. 77). Given

K sets of m independent observations each, each observation being the

logarithmic transformation of a sample variance of v observations

where

m0

2
Y
2

v - 1

0 = Ei (ln al - In a2)2 / K

ln a2 = E ln a2 / K .
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METHOD

Because of the intractability of using direct mathematical analysis a

monte carlo design was employed. For each combination of conditions inves-

tigated a simulated analysis was repeated 1,000 times in four blocks of

250 times each. The number and proportion of rejections of the null hypo-

thesis at the one and five percent levels were recorded for each of the

four blocks. The frequencies of rejection became dependent measures in

analyses of variance of the conditions investigated.

In this study only the three independent group, equal n case for the

Bartlett and Kendall test was investigated. Sample sizes, representing

small, intermediate and large sample situations with n's of 18, 36 and 48

respectively were selected. For each n a set of six v's was investigated:

n = 18, v = 2, 3, 4, 5, 6, 7; n = 36, v = 3, 4, 5, 6, 7, 8; n = 48, v = 5,

6, 7, 8, 9, 10. It was predicted that from each set one v would be found

which would produce maximum power for the given sample size. Where n/v

was not an integer v is the minimum subsample size. In this case the last

subsample formed consisted of v plus any remaining elements (always less

than v).

Control of Type I error was investigated for the case of equal treat-

ment variances. To investigate power three conditions of variance hetero-

geneity were used. Variances were formed by multiplying each element in

a treatment group by a constant representing the desired standard deviation

for that group. Variances were chosen for each sample size which would

provide diverse power points over the complete power range. Table 1

presents the constants selected and e, a measure of the degree of variability

in the set of variances.

16



14

The simulations consisted of a series of experiments, each conducted

with three samples, representing three treatment groups, of n observations

each. Sampling was random with replacement from two populations of 10,000

cases. A normally distributed population and a population with extreme

skewness and leptokurtosis (x
2
with 2 df) were used for the situations

where the normality assumption was met and violated respectively. The normally

distributed population was constructed by dividing it into 28 intervals of

0.3 standard deviation units ranging from -4.2 to 4.2 standard deviations

with known expected proportions of cases for each interval. Uniform

values of half the interval width were randomly generated and added to or

subtracted from the interval midpoint to fort normal deviates. The lepto-

kurtic distribution was constructed by forming cases of the sum of two

squared normal deviates. A procedure by Chen (1971) (made available

after the study using a normal population had been conducted) was used to

generate these deviates. Parameters (u, a
2
, y y

2
) were computed for each

population. The parameters were p = 0.0003, a2 = 1.0123, 11 = -0.0010,

y2 = -0.0166 and p = 1.9701, a2 = 4.0290, 11 = 2.0275, 12 = 6.0105 for the

normal and leptokurtic populations respectively.

A priori estimates of power using 4) (Myers, 1966, p. 77) were compared

with empirical results to examine the accuracy of this approximation. Phi

was computed as if v's in a given sample were actually equal. Value3 of

4) were calculated and approximate powers were taken from power curves in

Myers (1966, p. 390). Empirical powers were the proportions of rejection

of a false null hypothesis.

1.7
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RESULTS

Analysis of Type I errors was conducted in terms of proportions of

rejection (p) of a true null hypothesis. Of 72 sample p's only three

differed significantly at the .05 level from the nominal error rate.

Only one of these significant p's occurred with the leptokurtic population.

Table 2 presents sample p's for both populations at the one and five

percent levels. These p's are proportions averaged over the four blocks

of trials. The Bartlett and Kendall test was shown to be robust when

populations are extremely leptokurtic for all combinations of n and v

investigated.

The focus of the present study was on selecting subsample sizes which

would produce maximum power for a given n. To compare power produced by

the different v's, analyses of variance were conducted for the conditions

investigated. The dependent measures were the frequencies of rejection

for the four blocks of trials. Subsample size, population form, and 0

were the factors considered. The three mart effects and the population form

by subsample size interaction were found to be significant (c = .05).

The 0 effect was expected and is trivial. It is simply a measure of the

deviation from the null hypothesis. A population form effect was expected

and indicates a lower power for the leptokurtic population.

The interaction of population form and subsample size represents the

major complication of the study. It indicates that a single v may not

produce maximum power for both population forms. Had the desired results

occurred there would have been only a main subsample size effect and no

interaction. Because of the interaction the subsample size effect was

18
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investigated for each population form separately. Table 3 presents the

mean frequencies of rejections (averaged over the three 0 conditions and

four blocks of trials) for each v under each population form at the one

and five percent levels. The v's are ranked in terms of power produced.

Multiple comparisons via the Newman-Keuis technique indicated that in

most cases no single v was optimal (produced the greatest power) in any

given set. When the mean power was significantly less (a = .05) than the

maximum in the column it is marked with an *.

Considering both nominal error rates for n = 18, optimal v's were v = 4

for the normal population and v = 3 for the leptokurtic population. At

n = 36 with the normal population, no significant differences were found

between v's of six and seven. The leptokurtic results provided no clear

way to choose between v = 4, v = 5, or v = 6. Thus with n = 36, one could

generally use v = 6 with relatively little danger of appreciable power

loss. When n = 48 the results were clearer. For the normal population

v = 8 was most powerful and for the leptokurtic population v = 6 and v = 5

produced approximately equal maximum power.

A priori estimates of power based on 4) (Myers, 1966, p. 77) were compared

with power empirically produced in the sampling study. A moderate degree

of correspondence was found between the two. Peatson r's were computed

for each combination of n, population form and nominal error rate. The

minimum r computed was .86 and the maximum was .98 over the twelve sets

of data. A large part of this relationship was due to the differences in

0. As an example Table 4 presents empirical and a priori powers for n = 48

and a = .05. The ACV power functions appear useful in providing rough

estimates of power for the Bartlett and Kendall test.
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DISCUSSION

Tha robustness of the Bartlett and Kendall test was supported. Even

when the population from which samples are drawn is extremely leptokurtic

the Bartlett and Kendall test provides control of P(EI) at the nominal

alpha level. Control is unaffected by sample and subsample sizes. This

test may be recommended for general use even when populations have sus-

pected leptokurtosis.

Several researchers
(Box, 1953; Games et al., 1972; Gartside, 1972;

Miller, 1968; Scheffg, 1959) have pointed out the lack of knowledge for

choosing v in an analysis. This study suggests two rules of thumb for

selecting a most powerful v for a fixed n. Find a value near V, rounding

noninteger values higher if the subject population is normal or lower if

leptokurtosis is suspected. A second suggestion is to choose values at

this point which are even divisors of n. The power differences between

adjacent values of v are sufficiently small so that there usually would be

little power loss if the value used differs by only one from the optimum

value of v. These rules are in agreement with Gartside (1972) who noted

that an intermediate
arrangement would appear to give more power.

The given approximation to 0 and the power functions of the analysis

of variance are shown to be generally accurate for selecting power for the

Bartlett and Kendall test. Using the above rules of thumb for selection of

v, an experimenter should be able to approximate the power for any n chosen.

A problem arises if v's are selected in the uggested manner when n's

are unequal. In this situation the v's will also be unequal. The treatment

group with the largest n and thus largest v will have the most stable

20
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variance estimates. Hence this treatment group will have a smaller within

cell variance it the AOV. Conversely, the group with the smallest n will

have a larger within cell variance. Since m = n/v the sample sizes for

the AOV will also be unequal. This combination of heterogeneous within

cell variances and unequal n's may present problems for the AOV.
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Sample Variance
Size Condition 0

TABLE 1

Constants and 8's

Group 1 Group 2 Group 3

18 1 0.0000 1 1 1

18 2 0.0806 1 2 2

18 3 0.1552 1 2 3

18 4 0.2417 1 2 4

36 1 0.0000 1 1 1

36 2 0.0388 1 VT iS

36 3 0.0604 1 VI 2

36 4 0.0806 1 2 2

48 1 0.0000 1 1 1

48 2 0.0201 1

48 3 0.0388 1 /-1 /5

48 4 0.0604 1 /I 2

* Theta's reported in the present study are based on common logarithms.
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TABLE 2

Proportion of Significant Results

When H0 is True

Skewed-Leptokurtic
Population

Normal
Population

a=.01 a=.05 a=.01 a=.05

18 2 .010 .051 .006 .034*

18 3 .014 .058 .010 .041

18 4 .008 .051 .015 .052

18 5 .008 .065* .006 .044

18 6 .006 .049 .007 .051

18 7 .009 .050 .012 .057

36 3 .013 .049 .004 .041

36 4 .013 .052 .009 .045

36 5 .006. .061 .008 .042

36 6 .007 .039 .005 .030*

36 7 .011 .053 .009 .047

36 8 .008 .052 .010 .045

48 5 .013 .044 .013 .051

48 6 .011 .044 .014 .054

48 7 .005 .040 .013 .049

48 8 .006 .048 .010 .056

48 9 .012 .053 .009 .047

48 10 .009 .040 .010 .059

* Represents significant deviation from a.
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TABLE 3

Mean Frequency of Rejection for
Population Form X Subsample

Size Interaction

Normal
Population

Skewed-Leptokurtic
Population

n = 18

v a=.01 v a=.05 v a=.01 v a=.05

4 111.25 6 181.67 3 52.17 3 110.83

3 104.33* 4 177.67 4 46.92* 4 108.25

6 99.58* 5 176.83 2 41.50* 6 102.92*

5 92.25* 3 167.83* 6 37.50* 5 98.08*

2 62.75* 7 133.17* 5 32.58* 2 91.00*

7 46.42* 2 115.58* 7 17.25* 7 68.58*

n=36

v a=.01 v a=.05 v a=.01 v a=.05

7 127 75 7 197.25 4 49.33 5 105.58

5 125.17 6 194.00 3 47.67 6 104.17

6 122.50* 8 190.25* 5 45.83 4 102.58

4 118.58* 5 187.92* 6 44.58 7 97.50*

8 113.42* 4 175.83* 7 41.33* 3 94.58*

3 94.92* 3 152.83* 8 36.83* 8 92.75*

n=48

v a=.01 v a=.05 v a=.01 v a=.05

8 126.42 8 184.83 6 42.83 6 92.75

6 121.42* 9 182.75 5 41.75 5 90.17

9 120.92* 6 175.58* 7 37.00* 7 88.17

5 117.83* 7 174.58* 8 36.08* 8 84.58*

7 116.25* 10 173.08* 9 36.00* 9 82.83*

10 104.67* 5 171.58* 10 28.42* 10 73.42*

* Represents significant deviation from maximum, a=.05.
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TABLE 4

Empirical and A Priori Powers
n = 48, a = .05

v dfE 0

Normal Population
A Priori

4, Estimated Obtained

Skewed-Leptokurtic Population
A Priori

Estimated Obtained

5 24 .0201 1.386 .52 .443 0.752 .21 .204

5 24 .0388 1.924 .80 .720 1.044 .30 .354

5 24 .0604 2.401 .94 .896 1.302 .42 .524

6 21 .0201 1.461 .51 .462 0.781 .21 .217

6 21 .0388 2.029 .82 .729 1.084 .40 .359

6 21 .0604 2.531 .95 .916 1.353 .48 .537

7 15 .0201 1.386 .50 .448 0.734 .20 .214

7 15 .0388 1.924 .76 .734 1.018 .29 .340

7 15 .0604 2.401 .91 .913 1.271 .40 .504

8 15 .0201 1.497 .55 .499 0.786 .19 .184

8 15 .0388 2.079 .80 .781 1.092 .31 .338

8 15 .0604 2.594 .96 .938 1.362 .48 .493

9 12 .0201 1.461 .51 .491 0.763 .15 .188

9 12 .0388 2.029 .78 .777 1.059 .27 .339

9 12 .0604 2.531 .94 .925 1.322 .40 .467

10 9 .0201 1.386 .41 .454 0.721 .15 .177

10 9 .0388 1.924 .70 .720 1.000 .24 .286

10 9 .0604 2.401 .89 .903 1.248 .33 .418
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APPENDIX

Computational Example of the
Bartlett and Kendall Test

nk=7,7,7, vk=3,3,3

Data Matrix

In sil ,2 m2
il

X
i3 -13 In s2X

il
s2 X

i2
ln sit i3

14 10 31

8 9.0000 2.3972 9 19.0000 2.9444 10

11 17 15

10 12 15

14 2.9167 1.0704 12 10.2499 2.3272 36

12 18 24

11 17 16

120.3333 4.7903

94.2500 4.5459

sl = 4.6190 2 = 13.6190 s2 = 92.0000

Yik = In sik entries for ANOVA

T
1

T2 T
3

2.1972 2.9444 4.7903

1.0704 2.3272 4.5459

Analysis of Variance

EE Y =
EE Y2 =

17.8756
66.6719

SS = 10.4157
1.6338 2.6358 4.6681 Yk TOT

5.1233 13.6358 106.4952 Antilog (Yk) SSW = 0.8551

SS = 9.5606

9.5606 / 2 4.7803
BET

F
.8551 / 3 .2850

16.7708 with df = 2,3
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